
3ERUSALECOLLEGEOF EHGIMEERIHG 

DEPARTMENT OFINFORMATIGON TECHNOLOGY 
Collaborative Learning 

Academic Year 2021-2022 Even Semester 
Degree, Semester & Branch: VI Semester B.TECHIT 
Course Code & Title: JIIT1007 Machine Learning Techniques 

Name of the Faculty member (s): MS.Aishwarya S 

Innovative Practice Description 

" Unit / Topic: Unit I/ Maximum margin classification 
" Course Outcomc: C02 

" Topic Learning Outcome: TLO2 

Activity Chosen: Design-Thinking Process 

"Justification: 

Concept 

Maximum margin classification is a principle used in machine learning, particularly in 
support vector machines (SVMs), to achieve the best possible separation between different 
classes in a dataset. The goal is to find a decision boundary (hyperplane) that maximizes the 
margin, which is the distance between the closest points of the classes to the hyperplane. 
Here's a more detailed explanation: 

25 

1. Hyperplane: In an n-dimensional space, a hyperplane is a flat affine subspace of one 
dimension less than the space itself. For example, in a 2D space, a hyperplane is a 
line, and in a 3D space, it's a plane. 

2. Margin: The margin is defined as the distance between the hyperplane and the nearest 
data points from any class. These nearest data points are called support vectors. 

3. Maximum Margin: The maximum margin classifier aims to maximize this margin. 
By doing so, it increases the classifier's robustness to errors and improves its 

generalization to unseen data. 

Mathematical Formulation 

Objective 

Given a training dataset (x1,yl),(x2,y2),..(xn,yn)(x 1, y ), (x 2, y 2), \Mdots, (x_n, 
y_n)(xl,yl),(x2,y2),...(xn,yn) where xix ixi represents the feature vectors and yiy iyi 
represents the class labels (yie {1,-1}y i lin \{1, -I}yie{1,-1}), he goal is to find a 
hyperplane defined by wx+b-0w \cdot x +b= 0w:xtb-0 that maximizes the margin. 



Minimize |lwi|2/2\|w\|̂ 2 / 2|w|2/2 subject to yi(w-xitb)2 ly i (w cdot x i + b) \geq lyi(w xi 
+b)>1 for all iii. 

This is a convex optimization problem that can be solved using quadratic programming. 

Time Allotted for the Activity: 

To implement maximum margin classification using a Support Vector Machine (SVM), we 
can use popular machine learning libraries such as scikit-learn in Python. Here's a step-by 
step guide to implementing SVM for maximum margin classification: 

Step 1: Import Libraries 

First, you need to install scikit-learn if you haven't already. You can install it using pip: 

sh 
Copy code 
pip install scikit-learn 

Then, import the necessary libraries: 

python 
Copy code 
import numpy as np 
import matplbtlib.pyplot as plt 
from sklearn import datasets 
from sklearn. model selection import train test split 
from sklearn.svm import SVC 
from sklearn.metrics import accuracy score 

Step 2: Load and Prepare the Data 

For this example, we'll use the Iris dataset, which is a classic dataset for classification 
problems: 

Python 
Copy code 
# Load the Iris dataset 
iris = datasets.load iris () 
X = iris. data [:, :2] # We'll use only the first two features for 

simplicity 
y = iris.target 

# We'll only use two classes to make it a binary classification problem 
X = X[y != 2] 

yly != 2] 

# Split the data into training and testing sets 
X_train, X_ test, y_ train, y test = train test split (X, y, test size=0.2, 
random state=42) 

Step 3: Train the SVM Model 

We'll use the svc class from scikit-learn with a linear kernel to achieve maximum margin 
classification: 



python 
Copy code 
# Create and train the SVM model 
svm model = SVC (kernel= 'linear', C=1.0) 
sVm model. fit (X_ train, y_ train) 

Step 4: Make Predictions and Evaluate the Model 

python 
Copy code 
# Make predictions on the test set 
y pred = svm model.predict (X test) 

# Evaluate the model 

accuracy = accuracy_score (y_test, y_pred) 
print (f'Accuracy: (accuracy * 100: .2£)8') 

Step 5: Visualize the Decision Boundary 

To visualize the decision boundary and the support vectors, you can plot the data points and 
the hyperplane: 

Python 
Copy code 
# Function to plot the decision boundary 
def plot decision boundary (model, X, y): 

h = .02 # Step size in the mesh 
x min, x max = X[:, 0] .min () - 1, X[:, 
y_min, y_ max = X[:, 1] .min () - 1, X[:, 
XX, yy = np.meshgrid (np . arange (x_min, x_ max, h), np. arange (y_min, 

Y_max, h)) 

Z = Z.reshape (xx. shape) 
z = model. predict (np.c_ [xX. ravel (), yy.ravel () 1) 

plt.contourf (xx, yy, Z, alpha=0.8) 

plt.xlabel ('Eeature 1') 

plt.scatter (X [:, 0], x[:, 1), c=y, edgecolors="k', marker="o')) 
plt.scatter (model. support_vectors_ [ : , 0], model. support_vectors_l:, 1], 

facecolors='none', edgecolors='r', marker='o ', s=100) 

plt.ylabel (' Feature 2") 

# Plot the decision boundary 

plt.title ('SVM Decision Boundary with Support Vectors') 
plt.show () 

Full Code 

plot_decision boundary (svm model, X_train, y_train) 

Here is the full code together: 

Python 
Copy code 
import numpy as np 

0].max () + 1 

import matplotlib.pyplot as plt 

1] .max () + 1 

from sklearn import datasets 

from sklearn, svm import SVC 
from sklearn.model selection import train test split 

from sklearn.metrics import accuracy SCore 
# Load the Iris dataset 



iris = datasets. load iris () 
X = iris.data[:, :2] # We'll use only the first two features for 

simplicity 
y= iris. target 

# We'll only use two classes to make it a binary classification problem 

X = X(y != 2] 
y = yly != 2] 

# Split the data into training and testing sets 
X_train, X test, y train, y test = train test split (X, y, test size0.2, 

random state=42) 

# Create and train the SVM model 
svm model = SVC (kernel='linear', C=1.0) 
svn model. fit (X train, y_train) 
# Make predictions on the test set 
y pred = svm model.predict (X test) 

# Evaluate the model 
accuracy = accuracy_score (y_test, y_ pred) 
print (f'Accuracy: {accuracy * 100: .2£}%') 

# Function to plot the decision boundary 
def plot decision boundary (mode l, X, y): 

h = .02 # Step size in the mesh 

X min, X max = X[:, 0].min () - 1, X[:, 
y_ min, y max = X[:, 1] .min() - 1, X[:, 

XX, yy = np.meshgrid (np.arange (x min, 
Y_max, h)) 

plt.contourf (xx, yy, Z, alpha=0.8) 

Z = model.predict (np.c [xx. ravel (), yy.ravel () ]) 
Z = Z. reshape (xx. shape) 

0].max () + 1 

plt.xlabel ('Feature 1') 

1] .max () + 1 

plt.scatter (X[:, 0], X[:, 1], c=y, edgecolors='k', marker='o') 

plt.ylabel ('Feature 2') 

x max, h), np.arange (y min, 

plt.scatter (model. support vectors_[:, 0], model.support_vectors_[:, 1]: 
facecolors= 'none', edgecolors='r', marker='o', s=100) 

plt.title ('SVM Decision Boundary with Support Vectors') 
plt. show () 

" Procedure of the Implementation: 

# Plot the decision boundary 
plot_decision boundary (svm _model, X_train, y_train) 

This code trains an SVM model on the Iris dataset, evaluates its accuracy, and visualizes the 
decision boundary along with the support vectors. 

The design thinking process is a set of structured strategies that identify challenges, 
gather information, generate potential solutions, refine ideas, and test solutions. 

Collaborative, active learning strategy in which students work on a different 
application problem posed by the instructor, first thinking independently, then 
forming groups as Customer, Project Manager, Development, Testing and 



Maintenance team then finally working together to interact with one another on their 

given problem. 
Once interaction is finished between the groups, finally the development team is 

asked to interact with the customer team and then the developer team interacts with 

their own team about the process. 

Details of the Implementation 

Teacher gave a different application problem to the different teams about the 

various process models. Students think about what they know or have learned in 

software process model, and come up with their own idea to the problem. [Takes 1-3 

Minutes]. 

The teacher asks them to select the process model based on their problem and form a 

group Customer, Project Manager, Development, Testing and Maintenance team to 

discuss the problem. Then different teams interact with each other about their 

problems to deepen understanding of the process model. The Customer team is 

interacting with the developer's teams, and the developer teams collect the detailed 

requirements from the customers during their interaction. Then, the developer's team 

discussed the problem with their own team. They share their thoughts with each other 

and proceed with the task. [Takes 5-7 Minutes]. 

Students share their solution with the entire class. Teacher moderates the 

discussion and highlights important points. [Takes 05-10 minutes]. 

CO � PO/ PSO mapping: 

CO PO1 PO2 

CO1 3 

(1- Low 

PO3 PO4 PO8 

3 

2-Moderate 

" Images / Screenshot of the practice: 

PO10 PO11 

3� High) 

PO12 

2 



Reflective Critique: 
Feedback of practice from students and other stakeholders: 
Most of the students actively participated and enjoyed. Students were given a 
solution with various formats. 

Bright students enjoyed with peer learning. 
Benefit of the practice: (E.g.: Outcome attainment would have increased due to 

innovative practice over conventional practice) 
o Students are actively engaged. 
o Students learn from each other. 

o Makes class interactive. 

o Builds a friendly, yet academic atmosphere. 
o Includes all the students in the teaching-learning process. 

Challenges faced in implementation: 
Students were not aware of Design-Thinking Process even though made an 
announcement and posted the content of Design-Thinking Process in the course 

canvas. 

Slow learners were not interested to participate in practice. 
Noise level of the class room goes up and a transition was needed to get back on 

the topic. 
It was hard to keep every student on task. 

References: 
1. htps://www.forbes.com/sites/robynshulman/2018/11/19/10-ways-educators-can-make 
classrooms-more-innovative/?sh=2fe797577f87 

2. https://uxdesign.cc/3-design-thinking-exercises-to-make-problem-solving-more 
exciting-98bc3bb67350 

Signature of Faculty Member 

Dr. K. SUNDARAMOORTHY 
Professor & HOD 

Department of Information Technology 
Jerusalem College of Engineering (Autonomous) 

Pallikkaranai, Chennai-600 100. 



{ "type": "Document", "isBackSide": false }


{ "type": "Document", "isBackSide": false }


{ "type": "Document", "isBackSide": false }


{ "type": "Form", "isBackSide": false }


{ "type": "Form", "isBackSide": false }


{ "type": "Form", "isBackSide": false }

